it represents a stage in the synthesis of (+)-sarracenin. International Tables for X-ray Crystallography (1974). Vol. IV. For the structure of the latter see Miles et al. (1976).

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References

CLEGG, W. (1981). Acta Cryst. A37, 22-28.

- Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- MILES, D. H., KOKOT, U., BHATTACHARYYA, S., ATWOOD, J. L., STONE, K. E., BRYSON, TH. A. & WILSON, L. (1976). J. Am. Chem. Soc. 98, 1569-1573.

SHELDRICK, G. M. (1978). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.

TIETZE, L.-F., GLÜSENKAMP, K.-H., NAKANE, M. & HUTCHINSON, R. (1982). Angew. Chem. 94, 81-82.

Acta Cryst. (1986). C42, 1271-1272

Structure of Tetraphenylphosphonium Chloride

BY JOHN F. RICHARDSON,* JOANNE M. BALL AND P. MICHAEL BOORMAN Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4

(Received 4 February 1986; accepted 4 April 1986)

Abstract. $C_{24}H_{20}P^+.Cl^-$, $M_r = 374.85$, monoclinic, a = 9.3069 (7), b = 9.6235 (5), $P2_1/n_1$ c =22.225 (2) Å, $\beta = 99.248$ (4)°, V = 1964.7 (2) Å³, Z = 4, $D_x = 1.27 \text{ Mg m}^{-3}$, $\lambda(\text{Cu } K\alpha) = 1.5418 \text{ Å}$, $\mu =$ 2.50 mm^{-1} , F(000) = 784, T = 294 K, R = 0.038 for2865 unique reflections. The salt, isolated as an impurity in the preparation of $(Ph_4P)^+[S-(p-tolyl)]^-$, is not found to be isostructural with the previously reported structure of (Ph₄P)⁺Br⁻ or powder studies of $(Ph_4P)^+I^-$ and $(Ph_4As)^+I^-$. The average P-C bond length is 1.788 (2) Å and dimensions of the phenyl rings are considered normal.

Experimental. Colourless block (cut), $0.3 \times 0.5 \times$ 0.5 mm, Enraf-Nonius CAD-4F diffractometer, Ni pre-filtered Cu Ka radiation; lattice parameters from least-squares refinement of 25 accurately centered reflections with $40 \le \theta \le 56^\circ$; space group uniquely determined from absences $(h0l \ h + l = 2n + 1, 0k0)$ k = 2n + 1; 3337 unique reflections collected, 2865 considered observed at the $3\sigma(I)$ level $[\sigma(I)$ from counting statistics], $\theta_{max} = 65^{\circ}$, $\omega/2\theta$ scans, scan range of $1.5(0.66 + 0.142\tan\theta)^\circ$, variable scan speed 0.7° - 3.4° min⁻¹; three standard reflections $(1\overline{63}, 1, \overline{2}, \overline{12}, \overline{12},$ $3,\overline{1},10$) measured every 1500 s of X-ray exposure time, max. variation +5.0%, data collected: +h, -k, $\pm l$ to max. indices of 10, 11, 26. Data corrected for background, Lp, drift in standards and absorption (Walker & Stuart, 1983); min., max. absorption corrections of 0.79 and 1.24. Structure solved by direct

methods, MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978) and difference Fourier syntheses, refined by full-matrix least squares based on F, minimizing the function $\sum w(|F_o| - |F_c|)^2$, w defined as $[\sigma^2(F_o) + 0.00001(F^2)]^{-1}$, XRA Y76 system of programs (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976); H atoms included in calculated positions with isotropic thermal parameters set to 1.1 times B_{eq} of the bonded atom, H parameters not refined, all non-H atoms refined with anisotropic thermal parameters. Model converged with: 2865 observations, 236 variables, R = 0.038, wR = 0.038, max. $\Delta/\sigma = 0.67$ for E but all others <0.009, S = 1.51, isotropic extinction parameter $(E) = 9.9(5) \times 10^{-4}$. max. residual electron density = $0.28 \text{ e} \text{ Å}^{-3}$ associated with P. Scattering factors were those of Cromer & Mann (1968) for non-H atoms and Stewart, Davidson & Simpson (1965) for H atoms. Anomalous-dispersion corrections included for non-H atoms (International Tables for X-ray Crystallography, 1974). The closest interionic contact distance is 2.603 Å between H(33) and H(36) (at $1\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$). An ORTEP plot of the unit cell is shown in Fig. 1, atomic coordinates are given in Table 1, and bond lengths and angles are listed in Table 2[†]

© 1986 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

[†] Lists of structure factors, anisotropic thermal parameters for the non-H atoms, and positional and isotropic thermal parameters for the H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42968 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Coordinates $(\times 10^4)$ and B_{eq} $(\times 10)$ for the non-hydrogen atoms

B_{eq} is one-third of the B_{ij} matrix.				
x	у	z	$B_{eq}(\dot{A}^2)$	
890-3 (7)	4910-6 (7)	3690-3 (3)	48.1 (3)	
6455-0 (6)	567.2 (6)	3715-8 (2)	30.0 (2)	
7474 (2)	-531 (2)	4273 (1)	32 (1)	
8343 (3)	-1567 (2)	4091 (1)	39 (1)	
8997 (3)	-2530 (3)	4505 (1)	49 (1)	
8809 (3)	-2456 (3)	5106(1)	50 (1)	
7971 (3)	-1424 (3)	5295 (1)	53 (1)	
7300 (3)	-459 (3)	4887 (1)	46 (1)	
4735 (2)	-250 (2)	3458 (1)	33 (1)	
3874 (3)	132 (3)	2913 (1)	44 (1)	
2536 (3)	-490 (3)	2741 (1)	57 (1)	
2038 (3)	-1462 (3)	3102 (2)	62 (2)	
2870 (3)	-1853 (3)	3642 (1)	56 (1)	
4224 (3)	-1255 (3)	3822 (1)	42 (1)	
6174 (2)	2219 (2)	4044 (1)	32 (1)	
7288 (3)	2821 (3)	4461 (1)	39 (1)	
7151 (3)	4157 (3)	4664 (1)	45 (1)	
5915 (3)	4908 (3)	4460 (1)	47 (1)	
4784 (3)	4318 (3)	4064 (1)	44 (1)	
4910 (2)	2981 (2)	3856 (1)	36 (1)	
7464 (2)	825 (2)	3103 (1)	31 (1)	
8689 (3)	1679 (2)	3206 (1)	40 (1)	
9533 (3)	1866 (3)	2758 (1)	47 (1)	
9154 (3)	1225 (3)	2205 (1)	48 (1)	
7950 (3)	397 (3)	2096 (1)	53 (1)	
7107 (3)	177 (3)	2545 (1)	45 (1)	
	<i>B</i> _{eq} is <i>x</i> 890-3 (7) 6455-0 (6) 7474 (2) 8343 (3) 8997 (3) 8809 (3) 7971 (3) 7300 (3) 4735 (2) 3874 (3) 2038 (3) 2038 (3) 2038 (3) 2038 (3) 2870 (3) 4224 (3) 6174 (2) 7288 (3) 7151 (3) 5915 (3) 4784 (3) 4910 (2) 7464 (2) 8689 (3) 9533 (3) 9154 (3) 7950 (3) 7107 (3)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

P-C(1)	1.781 (2)	P-C(21)	1.786 (2)
P - C(11)	1.793 (2)	P-C(31)	1.791 (2)
C(1) - C(2)	1.385 (3)	C(21)-C(22)	1.400 (3)
C(1) - C(6)	1.402 (3)	C(21)-C(26)	1.392 (3)
C(2) - C(3)	1.377 (3)	C(22)-C(23)	1.375 (4)
C(3)-C(4)	1.377 (4)	C(23)–C(24)	1.372 (4)
C(4)C(5)	1.370 (4)	C(24)C(25)	1.381 (3)
C(5)-C(6)	1.376 (4)	C(25)-C(26)	1.379 (3)
C(11)–C(12)	1-390 (3)	C(31)-C(32)	1.394 (3)
C(11)–C(16)	1-393 (3)	C(31)–C(36)	1.380 (3)
C(12)–C(13)	1•379 (4)	C(32)–C(33)	1.376 (4)
C(13)–C(14)	1.361 (5)	C(33)–C(34)	1.370 (4)
C(14)–C(15)	1.372 (4)	C(34)–C(35)	1.365 (4)
C(15)–C(16)	1.385 (4)	C(35)C(36)	1.381 (4)
C(1)-P-C(11)	108-1 (1)	C(11) - P - C(21)	109.8 (1
C(1) - P - C(21)	109.9 (1)	C(11) - P - C(31)	111.6 (1
C(1) - P - C(31)	109.0 (1)	C(21) - P - C(31)	108-4 (1
P-C(1)-C(2)	119.7 (2)	P-C(21)-C(22)	119-8 (2
P-C(1)-C(6)	121.0 (2)	P-C(21)-C(26)	121.2 (2
C(2)-C(1)-C(6)	119.0 (2)	C(22)-C(21)-C	(26) 118.7 (2
C(1)-C(2)-C(3)	120.4 (2)	C(21)–C(22)–C	(23) 120.4 (2
C(2)-C(3)-C(4)	120.1 (2)	C(22)-C(23)-C	(24) 120-1 (2
C(3)-C(4)-C(5)	120.2 (2)	C(23)–C(24)–C	(25) 120-4 (2
C(4) - C(5) - C(6)	120.5 (2)	C(24)–C(25)–C	(26) 120.0 (2
C(1) - C(6) - C(5)	119.8 (2)	C(21)–C(26)–C	(25) 120-3 (2
P-C(11)-C(12)	121.5 (2)	P-C(31)-C(32)	118-1 (2
P-C(11)-C(16)	119.3 (1)	P-C(31)-C(36)	122.7 (2
C(12)-C(11)-C(16)	b) 119·1 (2)	C(32)–C(31)–C	(36) 119-1 (2
C(11)-C(12)-C(13)	3) 119.7 (2)	C(31)–C(32)–C	(33) 120-4 (2
C(12) - C(13) - C(14)	120.8(2)	C(32)–C(33)–C	(34) 119.7 (2

Fig. 1. ORTEP plot (Johnson, 1965) showing the unit-cell contents. Atoms are drawn as spheres of radius 0-1 Å and H atoms are omitted for clarity.

Related literature. A number of related simple salts have been reported: $(Ph_4As)^+I^-$ (Mooney, 1940), $(Ph_4As)^+Br_3^+$ (Ollis, James, Ollis & Bogaard, 1976; Bogaard, Peterson & Rae, 1979), $(Ph_4As)^+Cl_3^-$ (Bogaard, Peterson & Rae, 1981), $(Ph_4P)^+Br_3^-$ (Bogaard & Rae, 1982), $(Ph_4P)^+Br_2I^-$ (Müller, 1979), and most recently $(Ph_4P)^+Br^-$ (Alcock, Pennington & Willey, 1985).

We thank the Natural Sciences and Engineering Council of Canada for financial support (operating and infrastructure grants), and Dr K. A. Kerr for the use of the diffractometer.

References

C(33)-C(34)-C(35) = 120.5(2)

C(34)-C(35)-C(36) 120.5 (2)

C(31)-C(36)-C(35) 119-8 (2)

C(13)-C(14)-C(15) = 120.4(3)

C(14)-C(15)-C(16) 119.9 (3)

C(11)-C(16)-C(15) = 120.0(2)

- ALCOCK, N. W., PENNINGTON, M. & WILLEY, G. R. (1985). Acta Cryst. C41, 1549–1550.
- BOGAARD, M. P., PETERSON, J. & RAE, A. D. (1979). Cryst. Struct. Commun. 8, 347-349.
- BOGAARD, M. P., PETERSON, J. & RAE, A. D. (1981). Acta Cryst. B37, 1357-1359.
- BOGAARD, M. P. & RAE, A. D. (1982). Cryst. Struct. Commun. 11, 175-178.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A 24, 321-324.
- International Tables for X-ray Crystallography (1974). Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MOONEY, R. C. L. (1940). J. Am. Chem. Soc. 62, 2955-3002.
- Müller, U. (1979). Z. Naturforsch. Teil B, 34, 1064-1069.
- OLLIS, J., JAMES, V. J., OLLIS, D. & BOGAARD, M. P. (1976). Cryst. Struct. Commun. 5, 39–42.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, University of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Table 2. Bond lengths (Å) and angles (°)